:: Wachters.ca ::
home  
 
new user  |  login  
user: anonymous
  Shopping Cart  
Products
  Company
  Product Programs
  Personal Health Quiz
  Sea Vegetation
  Testimonials 1, 2, 3
  Testimonials - add
  Nutritional Glossary
 
  Newsletter
  News
  News Flash Links
  Weekly Special
  Policies & Procedures
  Contact us

   

Fact about The Wachters Blend of Sea Vegetation:

Telomeres, Aging, & Disease Prevention

Telomeres, Aging, & Disease Prevention: Do Telomere-Targeted Treatments
Have a Role in Clinical Practice?

By Stephen Holt, MD, PhD | Contributing Writer - Vol. 11, No. 3. Fall, 2010

Telomeres—the DNA caps on linear chromosomes that prevent aberration or
loss of genetic information during cell division—have aroused considerable
interest in recent years as targets for “anti-aging” and chronic disease
prevention strategies. Likewise, there are many products now promoted for
activating telomerase, an enzyme that preserves telomere length.

The medical literature, to say nothing of the consumer media, is replete
with promises of the potential benefit of preserving telomere length.
Research into the biological significance of telomeres and telomerase
culminated in a 2009 Nobel Prize in Physiology and Medicine for Drs.
Elizabeth Blackburn (UCSF), Carol Greider (Johns Hopkins), and Jack
Sztostak (Harvard). Telomeres on human chromosomes can be seen,
highlighted in yellow, in the accompanying micrograph (courtesy of Dr.
Michael West, www.michaelwest.org)

Human_Telomeres
Telomeres (yellow) on Human Chromosomes. Courtesy Dr. Michael West
(www.michaelwest.org)


Longer telomeres are hypothesized to correlate with improved longevity and
reduced disease burden. Several pharmaceutical and biotech companies are
actively developing drugs that target telomeres, and a growing number of
botanical medicines and nutritional products are sold as telomere
preservers.

It is generally true that these “protective regions” of DNA shorten with
repeated cell division in somatic cells, suggesting that telomere length
is a marker for aging.  Shortened telomeres may reach a point where they
cannot support normal division of chromosomes, resulting in cell
senescence (replicative arrest) and abnormal chromosomal function. These
changes can result in altered gene expression, cancer propagation, immune
dysfunction, aging of tissues and the emergence of chronic disease.
Indeed, aging cells with shortened telomeres seem to be predisposed to
“metabolic mistakes.”

The enzyme telomerase (a reverse transcriptase) acts to extend telomeres
and reduce their attrition. If telomere shortening correlates with aging
and disease, and telomerase can sustain or lengthen telomeres, then simple
logic dictates that interventions to modulate the telomere/telomerase
“duo” represent a promising strategy for preventing, delaying, or
minimizing degenerative diseases associated with aging.

However, simple logic does not always apply in the realm of physiology and
medicine. While tweaking telomeres and telomerase may enchant many
scientists and clinicians---and the concept certainly has become popular
in anti-aging medicine circles---matters are not quite as simple as some
individuals may have hitherto supposed.

 Observations on Telomere Tampering

Telomere length and telomerase expression appear to be linked in many, but
not all studied species (sea urchins are one exception). While it is
generally true that telomeres shorten with age, and that shortened
telomeres tend to “push” a cell towards senescence prior to apoptosis
(cell death), it is important to keep in mind that some people start with
longer telomeres than others.

The gene that regulates telomerase expression is “silenced” in healthy
cells. Some anti-aging clinicians hold that telomeres can be
lengthened---and by logical extension, cellular aging delayed---by
“switching on” telomerase activity by administration of certain compounds.
Extracts of the herb Astragalus are one example.

It is true that increased telomerase activity may lengthen telomeres, but
one must realize that this enzyme is also expressed preferentially in
cancer, as well as in certain germ cells and stem cells (immortal cells).
There has been some debate on the role of telomerase induction and
increased cancer risk, though many experts in the field deny that there is
a significant risk http://www.sierrasciences.com/).  This is clearly a
question warranting further research

We know relatively little about selective telomerase enhancement, though
it has become an important target for pharmaceutical or nutraceutical
companies seeking to capitalize on the potential to promote longevity and
reduce age-related diseases (www.tasciences.com,  www.geron.com). Much of
the research on telomerase and telomeres is closely guarded by companies
with proprietary interests.

In clinical practice, we’re left significant questions: do interventions
aimed at lengthening telomeres make good scientific sense as a means of
reducing the burden of age-associated diseases, and are these
interventions safe over the long term?

The Pros & Cons of Cellular Senescence

We do know that shortened telomeres exert a “telomere position effect”
which alters gene expressions at the cellular level. In this circumstance,
DNA repair genes do not function properly, and those genes that promote
cellular aging may emerge. The aging cell, with its shortened telomeres,
seems more prone to gene transcription “mistakes.”

However, one must pause and think about the induction of cellular
senescence as a potential defense mechanism against age-related cancer.
Cellular senescence and apoptosis are clearly a part of the aging process,
but they are also a means of eliminating dysfunctional, aberrant or
neoplastic cells.

Furthermore, telomere loss or compromise is not consistently shown to be
telomerase dependent and it may not always show a linear relationship with
advancing years. For example, telomere length rapidly decreases in
childhood (up to the age of 20 years), as it does in the elderly (greater
than 65 years).

While telomerase is not expressed in most somatic cells, some cells
(expanding immunocytes, germ cells and cancer cells) express high levels
of telomerase. The laboratory tests that many anti-aging doctors are using
for assessing telomere length are based on telomere measurement in white
blood cells (T-lymphocytes). Some studies imply that telomere loss may not
always exhibit a clear correlation with cells’ replicative history. These
concerns call into question the sensitivity, specificity, and validity of
telomere length measurement as a reliable indicator of physiological age.

Telomeres loss is associated with sedentary lifestyle, oxidative stress,
cancer, insulin resistance and chronic inflammatory diseases, to name a
few. But to some degree, this is a “chicken and egg” situation. Does the
telomere loss “cause” or “promote” development of diseases, or is telomere
shortening itself a reflection of an underlying disease-prone state?

To add to the conundrum, laboratory studies of germinal centers that
produce B cells (lymphocytes), show that telomere length can actually
increase in spite of intense cell replication. This observation runs
somewhat counter to the basic premise of anti-aging interventions, which
are predicated on the idea that repeated cell replication shortens
telomeres. Overall, though, telomere shortening appears to be correlated
with age and biomarkers of aging (http://www.spectracell.com/)

Dr. Peter Hornsby, a researcher on aging and cellular senescence at the
University of Texas Health Science Center, San Antonio, has published an
excellent review article on the role of telomerase in the aging process
(Hornsby PJ, Exp Gerontol, 42, 7, 575-581, 2007). This article is full of
debate and it reviews many of the unanswered questions relevant to
anti-aging therapeutics.

Comprehensive Disease Management

With all of the caveats and questions in mind, there is a general
consensus that telomere length has reasonable clinical predictive value as
a marker for tissue aging and disease propagation. We must recognize that
there is clear association between shortening of telomeres and common
diseases including cardiovascular disease (atherosclerosis), hypertension,
insulin resistance (Metabolic Syndrome X), diabetes mellitus, and diseases
associated with cognitive decline (dementia).

Moreover, reductions of telomerase activity can result in several disease
states including aplastic anemia, pulmonary fibrosis, skin lesions such as
dyskeratosis congenital, and certain types of cancer.

In a pivotal study, researchers in the Department of Human Genetics at the
University of Utah examined the relationship between telomere length and
mortality in a cohort of 143 otherwise normal, unrelated individuals
greater than 60 years of age. They found that overall, individuals with
shorter telomeres had more limited survival. Notable increases in death
occurred as a consequence of cardiovascular disease and infectious disease
among the people with shorter telomeres (Cawthorn RM et al, Lancet. 2003;
361(9355): 393-5).

Telomere preservation interventions should not be undertaken in isolation.
Meticulous management of co-morbid conditions is obligatory. Keep in mind
that Metabolic Syndrome X and diabetes are classic disorders of premature
aging. Every attempt should be made to tackle the following issues with
appropriate medical interventions:
•Minimize coronary heart disease and atherosclerosis risk, e.g. reduce LDL
(target <90 mg/dl); reduce oxidized and dense-particle LDL; increase HDL.
•Control blood glucose (important in both established diabetes and
pre-diabetes or Metabolic Syndrome X)
•Control blood pressure
•Keep homocysteine in check
•Reduce chronic inflammation (monitor C-Reactive Protein, maintain HS-CRP<1.
•Educate patients on the importance of exercise. Efforts to improve
aerobic fitness are obligatory. Professional trainers are recommended.
•Control weight through holistic interventions of diet, exercise, behavior
modification and supplement adjuncts.
•Support stem cell functions, increase nitric oxide signaling, improve
mitochondrial function, detoxify the body and optimize hormonal controls
(e.g. bio-identical hormone therapy).

Clinical Telomere Support

While no pharmaceutical has yet been approved for telomere modulation, a
number of natural substances (e.g. Astragalus extract) and specific
dietary supplements are widely promoted for this purpose.

The long-term safety or efficacy of nutraceutical interventions for
telomere support remains unknown. That said, a number of the factors
influencing telomere length could be positively affected by relatively
safe and low cost interventions (Table 1). These safe and simple
strategies aimed at telomere preservation and lengthening will likely have
general health benefits beyond any proposed effects on telomeres or
telomerase.

A Telomere Support Protocol

Research data and clinical observations permit the recommendation of the
following clinical protocol for telomere support (Table 2). There are
other “natural protocols” for telomere lengthening currently being
promoted, most notably the Patton Protocol (www.tasciences.com). I believe
these may be superseded by a more comprehensive approach to telomere
support and age management without such a direct focus on telomerase
induction.

I recommend the following:
• Lifestyle Change: Many positive lifestyle changes may also prevent
telomere shortening. These include optimum nutrition, weight control,
stress reduction, withdrawal of substances of abuse (simple sugar,
tobacco, alcohol, illicit drugs), elimination of unnecessary prescription
and over the counter medications, and the restoration of normal sleep
patterns.
•Dietary Supplements: A number of nutraceuticals are associated with
supporting telomere structure and function including, specifically:
extracts of Ginkgo biloba, Astragalus, Ginger root, vitamin D, folic acid
(and perhaps Vitamin B12), nicotinamide, and omega 3 fatty acids. These
are outlined in detail in Table 2. There are studies indicating that
taking a basic multivitamin or antioxidant may be associated with enhanced
telomere length or prevention of telomere shortening.

Diet & Lifestyle Guidance

While the evidence base supporting dietary supplements in this context
continues to grow, it is important to recognize that supplementation is
not a substitute for specific dietary guidelines. In brief, the
anti-aging, telomere-supporting diet should involve:
•Reduced simple carbohydrate intake concurrent with increased dietary
fiber intake, to counter insulin resistance.
•Selection of low-calorie, nutrient-dense foods. Calorie restriction
enhances maximum and average lifespan, and this process may be enhanced by
the use of calorie restriction mimetic compounds (more on this in a future
edition of Holistic Primary Care).
•High antioxidant load in a diet rich in fruit and vegetables.
Multivitamins taken in greens, berries, fruit and vegetable mixes are a
preferred form of general nutritional support. Phytonutrients are vitamin
co-factors.
•Increased intake of omega 3 fatty acids in active forms e.g. cold-water
fish, salmon etc.
• Decreased intake of saturated fat, hydrogenated oils, and trans-fatty
acids.
•Pursuit of a balanced protein intake with rotation among meat, dairy,
vegetable and fish protein sources (not greater than 1gm/kg of body weight
per day, unless otherwise indicated).
• Intermittent short periods of fasting and body detoxification (dietary
and otherwise) may support telomere structure and function.

In future educational columns on natural therapeutics, I will focus on
three very important issues in anti-aging or regenerative medicine: stem
cell support, the use of calorie restriction mimetics, and support for
telomere structure and function. I call these “The Anti-Aging Triad.” I
believe that these three areas of longevity medicine interdigitate in a
manner that creates the most important and promising frontier for “turning
back the clock” and improving our patients’ overall health.

STEPHEN HOLT, MD, PhD, is the founder and Scientific Advisor of Natural
Clinician, LLC (www.naturalclinician.com). This article, the first in a
series of articles on integrative medicine, is adapted from Dr. Holt’s new
book entitled, The Anti-Aging Triad (www.hiom.org).

Other items related to 'Research'
Multivitamins linked to younger ?biological age?
Review: B vitamins, the brain (& deficiencies)
Multivitamins can safely improve nutrient supply and overcome problems of inadequacy
Lutein and Zeaxanthin Benefit Young and Old Alike
8 Nutrients You May Be Lacking
Vitamin E is vital to building muscles and repairing cells
Psyllium Dietary Fiber Leads to Healthcare Cost Savings
Taking Prenatal Iron May Lower Your Child's Risk of Autism
Seaweed an effective alternative for iodine supplementation
Radiation report on the Wachters' Sea Vegetation Blend
Harvard?s large-scale randomized trial in men supports safety of vitamin C and E supplements
Chlorella supplements show cardiovascular benefits:
Meta-analysis: Vitamin C supplements may boost endothelial function
Abbott Nutrition study: Maternal lutein supplementation passes to child
4 Nutritional Supplements Every Man Needs
Nutrition researchers shoot holes in assertion that multivitamins are unnecessary
Zinc supplements may boost immune system in children
Iron supplements may boost female physical performance: Meta-analysis
Is dietary suplement use more prevalent than previously thought?
Resveratrol?s blood sugar management potential supported by meta-analysis, but are benefits limited
Vitamin D deficiency linked to compromised immune function
Daily multivitamin supplement may decrease cataract risk in men
Meta-analysis supports calcium?s weight management potential
CRN says 2015 dietary guidelines should include supplements
Vitamin D May Slow Multiple Sclerosis
Report: Who uses supplements?
Radiation Report - Wachters' Sea Blend
?Significant?: Vitamin E may slow functional decline in moderate Alzheimer patients
Magnesium may help people with heart problems to live longer
Low dietary fibre intake may increase cardiovascular risk
CoQ10 may reverse effects of age-related mental decline
Resveratrol shows fat cell shrinking potential: Human data
Calcium, vitamin D opportunity grows as osteoporosis prevalence rises
Vitamin B shows stroke protection promise
?Game changing? economic report: Supplements could save billions of dollars in health care costs
8 Amazing Health Benefits of B Vitamins
7 Best Supplements for Weight Loss
Increased iron intake can reduce Parkinson?s risk
Vitamin D slashes blood pressure and CVD risk
More Vitamin D May Lower High Blood Pressure
CoQ10 can reduce heart failure by half
Mothers to be who do not take in enough iodine may put their children at risk of lower IQ
Top 10 benefits of Zinc
Spirulina can better manage blood sugar in diabetes patients
More vitamin D may mean faster recovery from muscle injury
Curcumin (in Wachters' products) may match exercise for heart health benefits
Echinacea extract may help prevent common cold: Study
Multivitamin supplements may cut cancer risk
Vitamin D supplements may benefit lupus
Silbinol is now in WPB
CoQ10 and vitamin B6 levels linked to lower artery disease risk
Congress recognizes 100th anniversary of the vitamin
Vitamin C may prevent bone loss
Multivitamins may boost memory for older men
Multivitamin shows brain boosting activity for elderly women
Study links vitamin D to heart disease and early death
Vitamin D Speeds Tuberculosis Recovery
Green tea may influence brain function & boost working memory
Turmeric compounds show blood sugar management activity
Vitamin D shows eye health benefits
Dietary magnesium may reduce the risk of colon cancer: Meta-analysis
Chlorella shows immune boosting potential
NPA: Consumer Reports supplements probe is insulting to consumers
Dietary antioxidants may help slash pancreatic cancer risk: EPIC data
CRN hails 100th anniversary of the vitamin, reminds consumers of benefits of supplements
Can You Take Too Much Vitamin D?
CoQ10 shows promise for Huntington's disease
Vitamin B6 Deficit Tied to Heart Disease Risk
WDNA contains Resveratrol
Multivitamin supplements boost brain function, say UK researchers
Multivitamins may boost memory
Supplements ? understanding the possibilities, accepting the limitations
Multivitamins-and-mortality-Seeing-what-you-want-science
Seaweed may reduce blood pressure in healthy kids
Tufts-Harvard study builds vitamin D's anti-diabetes potential
Vitamin E supplements may reduce lung disease risk
Vegans at Risk for Low Iodine
Vitamin D linked to lower eye risk in young women
Seaweed May Fight Radiation
Vegan diet requires omega-3 and B12 boost
Study unlocks lycopene?s heart health benefits
Magnesium supplements may reduce diabetes risk
Multivitamin use linked to fewer heart attacks for women
Vitamin B may help prevent Alzheimer?s
Resveratrol supplements could improve heart health
Selenium shows protective effect for bladder cancer
Calcium?s weight loss potential gets RCT support
Resveratrol may boost eye health
Psyllium Fiber and Postprandial Peptide Release
Science: The emerging ingredients for joint health
Multivitamins may help weight loss in obese women
Apple fibres may boost immune health
Vitamin insufficiency boosting age-related diseases
Soy may reduce diabetes risk in overweight women
Vitamin, minerals may reduce eczema risk in children
CoQ10 may protect against obesity problems: Study
Soy protein may reduce cholesterol levels for diabetics, too
Study identifies vitamin D?s benefits for diabetic heart health
Low vitamin D linked to female infections
Multivitamins & minerals help children's brain function: study
Seaweed works!

  back to channel  

channel: main Monday, November 11, 2013 - 9:51am

new user |  login |  logout |  modify info |  webmail |
user: anonymous (access: )
This site powered by FallingApple.com SiteTools 3.0 & owned and operated by Triune-Being Research Organization Ltd.